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Othot’s advanced analytics
guide colleges and universities
to make informed decisions
throughout the

by understanding
each individual better.
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Topics

« Overview of Al, ML, and Advanced Analytics
« Data Before Analytics but Most Importantly, Insights
* ML in Action — University Advancement

* Wrap Up — What You Can Do “Back Home”
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Overview of Al, ML, and Advanced Analytics

Patterns of We are always We can change a
Behavior Repeat trying to predict person’s likelihood




Using AlI/ML IS About Better Decision Making

A Decision-Making Model A Decision-Making Model
Based on Human Judgment That Utilizes Summarized Data
Juonent fcine Big Summanzed Human Business
data data judgment decisions
Source: Eric Colson THBR

Source: Eric Colson THBR
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Using AlI/ML IS About Better Decision Making

A Decision-Making Model
That Combines the Power
of Al and Human Judgment

Machines Other info
; (nond|g|ta|
Big Pnssmle Human IN Business
 data actions judgment declsmns

s

Source: Eric Colson “ HBR
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An “Aerial View” of Al

Artificial intelligence
Machine learning
Language Processing

Deep learning
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Digging a Little Deeper

Artificial Intelligence

Bayesian

Machine Learning Techniques

Big(?) Data
Unstructured
Data

Predictive Prescriptive
Analytics Analytics




Machine Learning and Multi-Agent Interaction

Deep Mind: Atari https://openai.com/blog/emergent-tool-use/
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https://www.youtube.com/watch?v=V1eYniJ0Rnk&vl=en

The Root of Near-Term Success

Commercial 4
Leaders: <
>
NETFLIX
ama;on.com° What Diagnostic
- happened?
Analytics
Google
Descriptive
. ’ Analytics
Caplta/l()ne Hindsight

How can we
make it happen?

What will
happen?

Prescriptive
Analytics

Predictive
Analytics

Insight Foresight

Gartner Analytics Value Escalator
www.gartner.com

othot

A LIAISON it C

DIFFICULTY

11



B o R
i figit figi

Wi A i

*

L

80%
Likely




Data and analytics reveal the path to insights

\

) Will “Give”

>

) Won'’t Give

The Individual Replaces the Persona
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Everyone is Unique So We Need Non-Linear Thinking

Linear Nonlinear

SAT Scores SAT Scores
Won't Get Admitted Has Many Options Won't Get Admitted Has Many Options

o\

400 600 800 1000 1200 1400 1600
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Data Before Analytics but Most
Importantly, Insights
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What are the Key Building Blocks for Success?

B 5 & o)

Flexible & Product Thinking Innovation-

Leadership Dynamic IT Mg:tt: Applied to Oriented
Architectures Yy

Analytics Cultures

[
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How Should We Think About Data?

What data?
a. Descriptive
b. Behavioral (leads to prescriptive)

What’s important?

a. Money

b. Status

c. Relationship

d. Excitement (marketing)
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A Simple Model Objective: Personalized
Actions that Drive Behavior

\ HIQ
Data
>

Data Living PREDICTIONS

=~ !

PRESCRIPTIONS

Algorithm

Scale



HIQ's Are The Trees

What is the likelihood that the ultimate objective will occur?

Insights are the Fruit

* How to prioritize resources

* What future actions are most impactful?

* What are the tactics to the strategy
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Example: How Predictive Modeling Using Machine Learning Works

HIQ: What is the likelihood that a alumni will donate?

Classification

Training Data [ Predict Data

Model

Learns the difference
between those who donated
and those who did not

» Classification
Model

15% Likely to Donate
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Non-Linear Modeling at Work

Original  Prescriptions Prescriptions

Prediction A&B
. Classification
g Modol » BRI = EA = EriA
Visit ‘(’;'sl'lt
; a
No Visit Variable Impact ‘S Digital Marketing
No Call Visit 10
No Digital Marketing Call 5
Digital
Marketing 1
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The Engineered, Advanced Analytics Process to Insights

Data Data

An Othot Inc. developed process
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ML In Action — University
Advancement
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“WHAT IS THE LIKELIHOOD OF AN
ALUM TO DONATE??”

“What is the likelihood that an ALUM who
GRADUATED between 1959 and 2009 will
DONATE at least $1,000 to the XYZ FUND in the
current fiscal year?”
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Two distinct models predict the likelihood that an individual who
graduated between 1959 and 2009 will donate

$  Give at least $1000
B To a target fund

% During the next fiscal year

2 3 Year Lapsed & Non-Donors

fﬁ For two popu|atiOnS Separately: Recent Donors
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Models for Two Populations Allow Us to
Better Understand Individual Behavior

3 Year Lapsed and Non-Donors

Top Importances

Alumi Association Status CirrentAge
: 1 : Field of Work
Gift Capacity Estimate
Included: demographic, geographic, co- s e
curricular, alumni association and behavioral Al Aot e it Degrat eved
data Yrs Since Last Degr. Distance

Recent Donors

Top Importances Sum Student Fund Gifts:

3 : Cumulative 3 Years
Sum Annual Giving Gifts:
Previous FY Count Annual Giving Gifts:

: Cumulative 3 Years
. . Sum Any Gifts: Two FY Ago
Include: demographic, geographic, co- Median Age
curricular, alumni association, and behavioral : :
. . Avg Amt Any Gifts: Previous
data as well as donation history data FY Sib N Arinival Giihg Gits

Distance Two FY Ago

Sum Any Gifts: Three FY Ago
Usual Hours/Week Worked
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Even though probabilities are small for lapsed and non-
donors, some are much more likely to donate than others

Most are less
18090 likely than the
average
160000
140000
120000
3
E 100000
2
3
£ 80000
3
0000 MEAN
More than 2 times as likely to
Ao donate than the average
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Slight increases in probability could have a big impact

othot
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Number of Individuals

180000

160000

140000

120000

100000

An increase of 1% to each of these
individuals could result in an
additional 1,000+ donors
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Focus on recent donors with low likelihood
to identify donors who are at risk to churn
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This Is Explainable Al

The impact of distinct variables on an individual’s likelihood to give
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Looking Beyond Correlations

Average of Likelihood Score

Capacity to Give Capacity to Give ACTIVE  INACTIVE
R1 S10M+ 0.83% g1 s10M+ 0.25%
B2 51M - 59.9M 0.79% g2 S1M - $9.9M 0.30%,
R3 5250K - 5999K 0.70% g3 $250K - $999K 0.39%
R4 5100K - $249,999 0.59% R4 $100K - $249,999 0.33%
RS $25K - 599K 0.50% RS 825K - $99K 0.31%
RE $10K - $24K 0.42% RE S10K - $24K 0.27%
R7 52,500 - 59,999 0.36% R7$2,500 - 59,999 0.26%
RE LESS THAN $2,500 0.42% R LESS THAN $2,500 0.31%
RO UNABLE TO RATE 0.01% A9 UNABLE TO RATE

(blank) 0.10% (blank) 0.11%
Grand Total 0.30% Grand Total 0.19%
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Wrap up — What You Can
Do “Back Home”
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HIQ to Target
Personalized
Interaction

Data to Insights to Action

Relationship
(Affinity)

Next
mms) Best Action

$$$$ 1
Sensitivity

!

othot Next Best Action
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Insights to Action: Can you fill in the boxes for your
organization?

Who? People
What?
Data to Insights to Action

MAP

How? Tech/Al

Living Platform
ot h ot (Scale/Sustainability)
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'

- Any Questions?
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Higher Intelligence for Higher Education®

We are the future of higher ed advanced
analytics - providing a clear vision of outcomes
to make the best decisions possible for your
students and your institution
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